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ABSTRACT

The most general sets of coordinates which diagonalize the relative
kinetic energy of an N particle system are derived. These include
reaction coordinates which are symmetric with respect to both' the
reactants and products. The angle of skewing of an idealized potential
energy surface determines whether a molecular collision is adiabatic or
leads to an exchange reaction. The shape of the potential emnergy sur-
face leads to vibrationally excited diatomic molecules as products in

hydrogen-halogen reactions.
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I owe a great debt of gratitude to Henry Eyring for having given
me a good start in my scientific career, His physical insight and his
ability to construct simple models for explaining natural phenomena was
a great inspiration. The present research is an outgrowth of my graduate
work with him.

The objective of this paper is to derive the most general sets of
coordinates which diagonalize the relative kinetic energy of an N
particle system. Such coordinates are useful in both stationary states
and collision processes. In a subsequent paper some of the quantum
mechanical applications will be considered: isotopic shifts of the
energy, deviations from the Born-Oppenheimer separation, spin and orbital
angular momentum couplings, etc. The present paper is written from the
standpoint of molecular collisions or chemical kinetics. For example,
our coordinates might be used in the construction of potential energy
sur faces.

The concept of potential energy surfaces is an example of the genius
of both Henry Eyring and Michael Polanyi,1 In 1930, they knew from
quantum mechanics how to estimate the potential energy of an arbitrary
configuration of atoms. They asked the question, how could they con-
struct an energy surface, expressed in terms of the relative separation
between atoms, such that force on a hypothetical marble rolling on this
surface is equal to minus the gradient of the energy and the motion of
the marble faithfully reproduces the kinematics of a molecular collision
process. They consulted with their good friend, Eugene Wigner. The
energy contours should correspond to the effective potential energy,

Veff , which is the sum of the potential energy, V (the Born-Oppenheimer



approximation to the electronic energy of the molecular array), and the
. . 22 . . e -
centrifugal potential Z /21 , where & is the total angular momentum

of the system (a constant of the motion) and I is the moment of

inertia,

. _ 2 F1
Vegg = V + ( L7/21) (1)

Furthermore, the coordinates should be linear cowbinations of the sep-
arations Dbetween the atoms, chosen go as to diagonalize the kinetic
energy of the relative motion. Thus, when I was a graduate student,
Eyring's office was filléd with both cardboard and plaster of paris
potential energy surfaces to gimulate head-on collisions of atoms with

diatomic molecules -- and one of our functions was to roll the marbles!

I. COORDINATE SYSTEMS WHICH DIAGONALIZE THE KINETIC ENERGY OF RELATIVE
MOTION

In treating the kinematics of a many-body problem by either classi-
cal or quantum mechanics, it is desirable to shift from space-fixed
coordinates to relative coordinates and separate off the motion of the
center of mass. The resulting expressions for the kinetic energy
usually contain crogs-terms in the relative velocities or momenta. The
presence of these cross-terms greatly complicates the dynamics. It was
the presence of such cross-terms which led Eyring and Polanyi1 to skew
the relative coordinates in treating the interaction of three hydrogen
atoms. Their skewed coordinates represent a new set of relative co=
ordinates, which is indeed a special case of the general coordinates
(without such cross-terms) which we shall consider here.

There are a great many different sets of relative coordinates

which yield an expression for the kinetic energy of relative motion
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in diagonal form. Some of these sets have been considered previously
by Jepsen and Hirschfelderz and by Hirschfelder and Dahler,3 They

found that the kinetic energy of an N-particle system has the form
2 ; 22 .
T:%[mg1+g_2+...+gN] (23

Their sets of coordinates, gi , can be visualized in terms of 'mobile’
models.

The mobile is constructed in the following mammer: The coordinate
QN is a vector joining the center of mass of the system to the origin

of the laboratory coordinates,

N

3
ijzj (3

j=1

Q = My

Here Ej is the position and mj is the mass of the j-th particle;
MN is the mass of the system, MN = j?; mj . Throughout the rest of
this paper, the definition of QN reé:ins unchanged whereas there is
considerable choice in the selection of the N-1 relative coordinates.
The other (N-1) coordinates are vectors joining together the
centers of gravity of groups of particles. Let EC(A) be the center

of mass and MA be the mass of the particles in group A ,

MA = Z RUNE EC(A) = Z m@(

e A ’ KACA

M, ()

[1a

(4

Then the coordinate joining group A with group B is
)
Q; = (M /a+M))* [x (A) - r (8) (5)

If a group A consists of a single particle, MA is the mass and
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EC(A) is the coordinate of that particle. To (or from) each particle
there is exactly one vector coordinate. Any mobile constructed in the
above manner will furnish a suitable set of coordinates gl,...)gn which
satisfies Eq. (2). For two particles (such as the hydrogen nucleus and
electron), Q1 is the square root of the reduced mass times the separa-
tion between particles. Fig. 1 shows the three possible mobiles for a
three particle system. Fig. 2 shows three of the many possible mocbiles
for 4 particles.

All of the possible sets of coordinates Qi,.. which (together

]
Thayel

with 'QN) satisfy Eq. (2) can be generated by unitary transformations
(rotations and reflections in a space of N-1 dimensions) of any set

of coordinates 91,. (which might, for example, be obtained

sy

from a mobile) In order to prove this, let

(6)

O
=
Il
e
(Tl;
g
=
Il
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-
“
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i
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Then,

N-1 -

|2 =
)2l ) ) ) Mytuy s 7
i=1 i=1

If, now, the coefficients R i form a unitary matrix so that

i
N-1
Z Rij Beie = gjk (8)
i=1
then

N=1 N-1

2 2

! -

i~ /, 8 (9)
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Fig. 1: The Three. Possible Mobiles for a Three Particle System.

The solid circles are particles, whereas the open circles are centers
of mass-of groups~of.particles;_ if particle"1" reacts with mqleéuie
123", the initial phase of the‘feactidh is Béstudescribed by Mobile (a).
If the products of the reaction ape Y2W 4 NI or Y3" + V12" the
completion of the reactive collision is best described by Mobile (b}

or (c) feépectively,
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Fig 2: Three of the Many Possible Mobiles for a Four Particle System.
- . ¢
= t v If molecule "12" collides with modecule 34", Mobile (a) is a good
description. Mobile (b) describes the reaction products ""23" and ni4 L,

" Mobile (c)-is one of many alternate descriptions.
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Thus any unitary transformation applied to an scceptable set of co-
ordiates gl""’gan produces another acceptable set of coordinates
Qi,..,,g&wl. Since Eq. (8) places N(WN=1)/2 vestrictions on the (Nwl)z

coefficients Rij , there are

en? - MOED (b2
: ‘

arbitrary parameters embedded in the Rij matriz, On the other hand,

let us consider the most general expression for the relative coordinates

',
Qpse--5Qyq 5

N=1
gé = Ej Aij (gj - EN), 1=1,,..,N~1 (10)
j=1
2 - oy s
There are altogether (N-1) coefficients Aij . Eq. (2) imposes

N(N-1)/2 conditions on the Aij , since of these (N=1)(N-2)/2
correspond to the vanishing of the cross-terms and (N-1) conditions
correspond to the requirements for the diagonal terms in the relative
kinetic energy. Thus, the number of arbitrary parameters in the Aij
is just exactly equal to the number of arbitrary parameters embedded in
the R,. . We conclude that every acceptable coordinate set can be

1]

generated from ope set by a suitable unitary transformation.

A. Three Particle Coordinates

In order to understand the significance of the various coordinate
systems, let us consider the three particle gystem in great detail.
Corresponding to mobile (a) of Fig. 1, there are two relative

coordinates




1 : :
‘my (m,+ m,) |* m,x o+ m,r,
912[12 3] [=r+ 3537 MLy -
M ~{. mz-{-m3 i

and

i
- m,m 5
= 23 - ] ‘
9‘2 B [mz-i- mBl [‘1:3 S (12)

These can be expressed in the form

Q= o (@, )+ By r,)) cos d (13)

and
Q2>= ﬁ (;3~ 32) sin @ (14)

Here '

ol = [ml(m2+ m3)/M']§, 6= Em3(m1+ mz)/MJ/2 (15)

and

m_m £

B 13 ,
cos § = E(m1+ m2)(m2+ m3) (16

As Fig. 3 shows, 91 and g2 correspond to Eyring and Pé:»lanyi“s1 famous
"skewed coordinates'. Table 1 shows how @ , ol , and @ depend upon

. : o
the relative masses. When the three masses are equal, @ = 60 and

o

o= B = (/3"
In accordance with our theorem any acceptable coordinates, gi and

! are determined (except for their sign) by a rotation of the co-

2 2

ordinates Ql and _Q2 through an aungle 0 ,

g'l = Ql cos 8 + Q, sin e (17)
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Table 1: Three Particle Coordinate Parameters
i

ml/m2 m3/m g X /m.zz (é /m,,
3 3 41° 25° 1. 30931 1. 30931
4 2 45° 1. 22474 1. 15470
3 1 529 14? 1. 09545 0.89443
3 1/2 60° 1. 00000 0.66667
5 1/3 64° 20" 0.96077 0. 55470
2 2 48° 11° 1. 09545 1.09545
.2 1 54° 449 1. 00000 0.86603
2 1/2 61° 52! 0.92582 0. 65465
2 1/3 65° 541 0.89443 0.54772
3/2 3/2 53° g 0. 96825 0.96825
3/2 1 56° 47! 0.92585 0.84517
3/2 1/2 63° 26 0.86597 0.64550
1 1 60° 0.81650 0.81650
1 1/2 65° 54" 0, 77460 0.63246
1 1/3 69° 18" 0.75593 0.53452
1/2 1/2 70° 32° 0.61237 0.61237
1/2 1/3 739 13 0.60302 0.52223
1/3 1/3 75" 81" 0. 51640 0,51640




and
gz=cgleln9+g, os 8 (18)
Thus, if © = @ = /2 so that cos 8 = sin ) and sin © = = cos @ ,
! = - 10N
Q’l [m + m E,}:Z 1:‘“’1] (13
and

e

in rl+ m712 .
i (20)
m,+ m

m(m+m)]
Q= - .

The Qi and Qé of Egs. (19) and (20) correspond to mobile {(c) of

Fig. 1. They can also be written in the form

Qi:g{(};a

9 ;1) sin @ | (21)

and

i

) { = é = & " ] P99y
Perhaps the most interesting coordinates are obtained by taking
= (@/2) = (x/4). Using Egs. (17) and (18) together with Eqs. (13)

and (1l4) and Eqs. (21) and (22),

" -1 1 (1 + sinf - cos@) ¢ (xr.- r)
Q, =2 (l-cos@) * - (23)
=(1 = gin@ - cos@) B @ E“Z)
and
" -1 L (1 + sinf - cosf) @ (23«: Z‘Z) o
Q = 2 7 (l-cos@) * (24)

-(1

|

sin@ - cos®) ()~ L :

For a chemical reaction in which particle "1'" collides with '"23"

1 70
to form '"12" plus "3", the coordinates 31 and EQQ are symmetric with



ot

e,
Yy

&

A AR L

T B s

it "

Fig. 4: Relationship Between the Coordinates Ql and 92 and the

Potential Energy Surface.

As this figure shows, the potential energy surface as a whole has been

rotated through the angle ¢ 74) - (0/2). This establishes the basic
1" 14}

symmetry of gl and 92 with respect to 0((22‘ ;l) and fgf(LEJ'LZ)’

Since the relative coordinates- are vectors,  this figure corregponds

to ‘three figures in terms of scalar projections.

ol
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Q= o (g,mzy) sin @ (30
&
22: "’g(gévrq) sin 8 {31
QB = of (zza:,gzl) cos ¢ + @@;3” L’Z\h + é/(,f;; i’{,}' cos B {32
where
ml(m3+ még’) 7 e
cos § = (m1+ mz}(M - ml}“ﬁ £23)
5 ;
mé(m]‘%ﬁ m?) 2
cos 8 = (m3+ m&) M - mé)l (34}
and
. L )
A = Eml(M = ml)/Mgz (35)
’ : E :
G- E}m1+ iy ) (m m,) /] (36)

1
Z

Y;m&(M - mA)/@E (37)

From Eqs. (30) = (32) it follows that in the 9;1 Q. Q‘ﬂ"% space, the

It

v

] 5 xc) o e W 3 Tmn 4 oy e
relative coordinates @i(gz £1) 5 1@(3;3 é2> s WL, £3) are
skewed. Thus, the four particle potential energy surfaces ewpressed

in terms of o£(£2= 3;1) 5 @ (£3a 12) 5 ‘E/(ELE _’53} have coordinate
grids which are skewed parallelepipeds. If the masses are equal,

1

=0=5 44" and o(=¥ = (3&11/&)2 and ﬁ = ml'

ot

Y

The coordinates - Q% s = g% , and Q;% corresponding to mobile

(b) of Fig. 2 can be expressed in terms of g1 B Q’;? , and g% by w
of Eq. (6) where the unitery matrix R is given by (for convenience,

let m,, =m, +m,) ,
1] L ]
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L

4 =5 = .
( mlsz ) i ( m3m4M ‘> mlm3 m2m4 .
D
AR TAYE! T A (191 4™ 3™ 35)

1,

% %

R - <m1m3 ) ( o™ > W( - >
it 1223 M23"34 .

12™23"34
YLy

2 . 1/2 3
( mzma ) ( m m.3 | ( m.lmAM ’)
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My oMoy 14™34 e i D

o

[N U
o

(38)

1

Of course this matrix could be expressed in terms of three Eulerian
angles.

Coordinates which are symmetric with respect to the 'reactants"

"12" and "34" and the '"products'" '"23" and "14" are given by Eq. (6)

2
using the transformation matrix 022 . TFor example, if all of the
masses are equal
0 0 -1
i =1 1l
4{2 = 2+ 2 0 (39)
- ull ok
-2 2 2" 0
and the symmetric coordinates are
| 3
o = @ /F [z, oy z, ) (40)
1
iy = 2 = =
Q (m1/4) [ It r,m gt Eé] (41)
1
[ 3 o _ -
Q4 = m/8)* [rp=rp- 24t r,7] (42)

These symmetrical coordinates for equal masses were suggested to us by
E. Wigner (private correspondence). At the time, we were disturbed

because we did not see how to explain them on the basis of a mobile.
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The explicit formulse for the coordinates symmetric between the products
and reactants for unequal masses are not given here becguse the gines
and cosines of the Eulerian angles corresponding to GQ and dzé are very

messy when the masses are arbitrary., However, for any

&
iy
<)
[0
o
]
e
e
o
&)
LG
(

these symmetric ceordinates would be esasy to abtain,

II. THE SIGNIFICANCE OF THE SKEWED COORDINATES

In order to get a feeling for the gignificance of the coordinates
which diagonalize the relative kinetic energy, let us consgider the
motion of three rigid particles constrained to wmove in & line. For
simplicity we assume that the potentiszl energy is zero unlesgs either
particles "1" and "2" or "2" and '""3" collide, in which case the poten-
tial energy ig infinite. 1In Fig. 5, collisions between "1' zud '"2"
correspond to points along the side wall; collisions between '"2" and
"3" correspond to points on the horizontal wall. Table 2 gives the
velocities (in laboratory gpace) of the three particles at different

.

points on the trajectories which are illustrated in Fig, 5. It is

Table 2: Particle Velocities (in Laboratory Space)

Corresponding to Trajectories Shown in Fig. 5.

Particle Mass Initial Velocigi\ Velocit Velocity
Velocity After (1) After (2) After §§3

Fig 5a : e 5 " 9 Exchange
H-H-H & L D ° 9 Reaction
3 1 0 0 . R
, N
Fig 5b L 3 & a2 u/2 U adisbatic
T-H-D . L > 812 ~ife u Collision
3 2 0 0 u u .
) 1 3 0 0
iR g 1 0 L
T-H-D -
3 2 -u = u/3
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convenient to think of the masses of the particles in terms of the three
hydrogen isotopes H , D , and T whose relative masses are 1 , 2,
and 3 respectively. 1In the three trajectories which are illustrated,
two of the particles are initially at rest. For the H=H-H system
(equal masses) shown in Fig. 5a, initially we have "1" + "253" , after

the collision particle "

2" has exchanged partners leaving '12" 4 73"
corresponding to an exchange reaction. If initially "2" and "3" are
separated by the distance R , then after the reaction "1" and "2"

are separated by the same distance. For the T-H-D system shown in
Figs. 5b and 5c¢, the trajectories shown correspond Lo adiabatic ceolli-
sions. The difference between the H-H-H ' aund the T-H=-D collisions
is that the angle of skewing is @ = 60° for the equal masses and

¢ = 45°  for the T~H=Daaccording to Table 1. If, now, we interchanged

the positions of the H and the D to form the system T<D-H , then

]

according to Table 1, the angle of skewing is @ 63° 26' or almost
60°. Therefore the collisions T + DH or TD 4+ H would result in
exchange reactions.

The trajectories oa these idealized potential energy surfaces can

1

be determined in classical mechanics by the use of the wethoed of virtual

reflections.” In Fig., 6 the lines marked ”vs” are reflecting surfaces

10 L

corresponding to the side wall, whereas the vy oare virtual images of
1

the horizoatal wall. The virtual trajectory is a straight line. Letting

0 be the origin, the triangles @ @ 0 and 0
@ @ 0 and @ 0 ; etc. are congruent, The number of

turning points in the trajectory is equal to the number c¢f intersections

=

of the virtual trajectory with the real and virtual reflecting surfaces.
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General Collisions of Three Rigid Particles in a Line Showing

the Use of the Method of.Virtual Reflections.
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Thus, the largest possible number of turning points for a trajectory on
a surface with ¢ = 60° is three (as shown in Fig° 6a); or with @ = 450,
it is four (as shown in Fig. 6b). Unfortunately, the wmethod of virtual
reflections does not apply in quantum mechanics ag there is interference
between the various segments of the trajectory. Conformal transgforma=
tiong cannot be used in quantum mechaunics for much the sawme reasgon.
Thus, the calculation of trajectories (or the corresponding wave fun0m.
tions) remains very difficult in quantum mechanics, even for such
idealized potential energy surfaces.

In many cases, from the shape of the potential energy surface one
can predict whether the energy released in a chemical reaction will
take the form of vibrational or translational energy. Fig. 7 shows a

“eaction

i}

schematic potential energy surface and g trajectory for a
"N 4 M23" = U214 M3",  Because of the nature of the energy contours,
almost all of the energy released in this reaction must go into the
vibration of the product molecule "12", Converzely, the reverse
reaction could only take place if initially the molecule "21" were
vibrationally highly ezcited.

When I was a graduate student, George Kimball and Henry Ey‘ring4
calculated an approximate potential energy surface for the reaction
H + Cl2 =% HCL + C1 which is reproduced here as Fig. 8. To convert
Fig. 8 into a proper potential energy surface, the angle between the
RH=01 and the RCl-Cl should be skewed. However, for this case
¢ = 83‘O 15', which is not too different from 900o Furthermore, the
horizontal scale (relative to the vertical) should be 4,25 RClmCl

instead of RCl~Cl since /(Z/CK’ = 4,25, With these changes, the



‘Kaoaoefeay oyl

) 0
»\»rQ. UMeyes s Sa[Nosjoll JTWoleTp POITOXS .\.y.m_.m,.‘m.ﬂO‘%HmHﬂ.ﬂP mmﬁﬂa@OHﬂm ubi + wllu A\WIL uEelu + uln UOTIoead {¥¢Yyj

*odeys jensnu YjTa @ummusm‘%mHQﬁm ierauelog yeorieyicddy :7 °28ig

(Ix-2x)»

[




°Z2€61 utr Buriky

pue [requty £gq po3ETNOIE) T0-10-H ws3sLg syj JoJ ¢mummusm A3 3suy TeTIUs204 ®zewrxoxddy :g ‘814

D pue [ wes3aq swoxsEuy uy 20uelsiq

0e 'z 0 a1
; e /)/ 01
|
/ kR
i
0T
o .
¢
: 1oz

Y

S
"

2
[

IO Pue H u2am39q Swox3sSuwy ur 2dueIsyy

0¢




15
Kimball=Eyring potential energy surface would still resemble Fig. 7,
I remember that Kimball and Eyring commented that the reaction H + Cl2
would lead to vibrationally excited HCL1 . Thus, it came as no surprise
to me when John Polanyi (Michael's son) and co—workers5 discovered that
for the reactions H + Cl2 and H + Br2 an appreciable fraction
(approximately one-half) of the exothermal energy appeared as vibra-
tional excitation of the products.

The construction of approximate potential energy surfaces by the
crude techniques of Henry Eyring and his co-workers led to many impor-
tant conclusions about reaction kinetics.6 Within the next few years,
we can expect that very accurate potential energy surfaces will be

constructed which will help to explain and predict many important

features of molecular collisions and chemical kinetics,



30

j=+
(&)

REFERENCES

of { . This mistake was recogunized by 0.

H. Gerghinowitz, and C. E. Sun, J Fh
by J. 0. Hirschifelder, Ph.D. Dissertzilon,

D. W. Jepsen and J. 0. Hirschfelder, Proc. Nat. Acad. Sci. 45, 248
(1959).
J. 0. Hirschfelder and J. S. Dahler, Proc, Nat., Acad, Sci. 42, 363

(1956).

G. E. Kimbagll and H. Eyring, J.A.C.S.

v, and

J. C. Polanyi, Disc. Faraday Soc. 44, 183 (19¢7). They used infra-

red chemi-luminescence techniques. They wers able to explain

their experimental results on the ndoa=Eveing-Polanyi-
Sato potential energy hyper=-surfaces.

J. 0. Hirschfelder, J. Chem. Phys. 9, 645 (1941) showed how to
calculate quickly and easily the salient featwres cof Eyring-type
potentisl energy surfaces for any three or four atom system.

D. W. Jepsen and J. 0. Hirschfelder, J. Chem. Phys. 30, 1032 (1939)
developed the method of virtual reflections and considered the

dvnamics of three rigid particles moving in a line on idsalized
¥ £

potential energy surfaces. !





